# **RESPONDENT'S EXHIBIT 12**

#### Aerobic degradation of DCPA (Dacthal) in aquatic systems

| <b>Report:</b>       | MRID 49307515. Nelson, T.R. 1984. (          | p. 12). An Aerobic Aquatic Soil         |
|----------------------|----------------------------------------------|-----------------------------------------|
| -                    | Metabolism Study with 14C-Dacthal (I         | Revised per PRN 11-03 and 86-5).        |
|                      | Unpublished study performed by SDA           | Biotech Corporation, Painesville, Ohio; |
|                      | sponsor unknown; submitted by AMV.           | AC Chemical Company, Newport Beach,     |
|                      | California (pp. 1, 12). SDS Study No.:       | 699-3EF-84-0073-001. AMVAC ID: 100-     |
|                      | MET-010a. Experiment started July 16         | , 1984, and terminated November 1, 1984 |
|                      | (p. 12). Final report issued January 29,     | 2014.                                   |
| <b>Document No.:</b> | MRID 49307515                                |                                         |
| Guideline:           | OCSPP 835.4300                               |                                         |
| Statements:          | The study was conducted according to         | GLP standards (p. 6). Signed and dated  |
|                      | Data Confidentiality, GLP, and Quality       | Assurance statements were provided (pp. |
|                      | 2, 6, 27). The authenticity of the report    | is certified in the Quality Assurance   |
|                      | statement (p. 27).                           |                                         |
| Classification:      | This study is supplemental. No time 0        | samples were collected. Soil properties |
|                      | such as pH and organic carbon content        | were not reported, and the soil was     |
|                      | oversieved (600 $\mu$ m) prior to use. No in | nformation was provided on the redox    |
|                      | potentials in the water and soil before a    | and during the experiment.              |
| PC Code:             | 078701                                       |                                         |
| <b>Reviewer:</b>     |                                              |                                         |
|                      |                                              | f                                       |
|                      | James Lin, Environmental Engineer            | Signature:                              |
|                      | U.S. EPA                                     | <b>Date:</b> January 19, 2017           |
|                      |                                              |                                         |

#### **Executive Summary**

The aerobic transformation of [phenyl-U-<sup>14</sup>C]DCPA (dacthal, SDS-893) was studied in a water:silty clay loam soil system (water pH 8.6, soil uncharacterized) from Ohio in closed systems treated at 0.43 mg a.i./L and incubated in the dark at 25°C for up to 90 days. Samples were opened to the air for at least 1 hour/working day. Duplicate samples (two entire bottles) were collected at each sampling interval. Redox potentials, oxygen saturation and pH of the test system were not reported. It was not demonstrated that the test system was viable before or during the study.

Overall mass balances averaged  $100.8 \pm 4.6\%$  (range 92.1-110.7%) of the applied. Recoveries were variable but generally within guideline criteria (90% - 110%). In the water column, DCPA decreased from a maximum of 32.2% of the applied at 4 days (first sampling interval) to 1.2% at 90 days posttreatment. In the soil, DCPA was 72.8% at 4 days, a maximum 77.9% at 14 days, and 27.1% at 90 days.

The observed  $DT_{50}$  value, calculated half-life, and information on transformation products are listed in **Table 1**. DCPA dissipated with a SFO DT50 of 45.5 days. Two transformation products were identified. No time 0 samples were collected. In the water, total radioactive residues were 39.4% at 4 days posttreatment and increased to a maximum 80.4% at 90 days. In the soil, extractable radioactivity was 77.2% at 4 days, increased to a maximum of 83.8% at 14 days, and was 30.8% at 90 days. Unextracted radioactivity was  $\leq 1.4\%$  in all samples except for one replicate at 7 days (3.4%). Volatiles were not measured.

#### Table 1. Results Synopsis: Aerobic Aquatic Metabolism of DCPA in the Total System<sup>1</sup>

| Total System                                                                             | Observed<br>DT <sub>50</sub> | Calculated<br>Half-life | Model<br>Parameters and<br>Statistical                                               | Transformation Products Common<br>Name<br>(maximum % AR, associated interval) <sup>2</sup> |       |  |  |
|------------------------------------------------------------------------------------------|------------------------------|-------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------|--|--|
|                                                                                          | (uays)                       | (uays)                  | Statistics                                                                           | Major                                                                                      | Minor |  |  |
| Ohio, USA<br>Water:silty clay loam soil<br>(25°C, water pH 8.6, soil<br>pH not reported) | 33-46                        | 45.5<br>SFO             | $\begin{array}{c} C_0 = 105 \\ k = 0.0152 \\ S_C = 863 \\ S_{SFO} = 911 \end{array}$ | MTP (54.9%, 90 days)<br>TPA (26.2%, 90 days)                                               | None  |  |  |

1 Calculated half-lives and model parameters in accordance with NAFTA kinetics guidance (USEPA, 2012); Single First Order (SFO).

2 AR means "applied radioactivity".

MTP = Monomethyl tetrachloroterephthalate, DCPA monoacid, SDS-1449.

TPA = Tetrachloroterephthalic acid, DCPA diacid, SDS-954.

#### I. Materials And Methods

#### A. Materials:

| 1. Test Material      | [Phenyl-U- <sup>14</sup> C]DCPA (p. 13). | CH3      |
|-----------------------|------------------------------------------|----------|
| Specific activity:    | 167,170 dpm/µg                           |          |
| Radiochemical purity: | 98.5%                                    |          |
| Chemical purity:      | Not reported                             |          |
| Lot No.:              | 719476                                   | O<br>CH3 |
| Solubility in water:  | Not reported                             |          |

#### 2. Reference Compounds: The following standards were used in the analysis (Table 2).

| Applicant's Code Name      | Chemical Name                                                                               | Purity (%) | Batch No. |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------|------------|-----------|--|--|--|
| SDS-893; Dacthal; DCPA     | Dimethyl tetrachloroterephthalate; Dimethyl 2,3,5,6-<br>tetrachlorbenzene-1,4-dicarboxylate |            |           |  |  |  |
| SDS-954; Dacthal diacid    | Tetrachloroterephthalic acid, TPA                                                           |            |           |  |  |  |
| SDS-1449; Dacthal monoacid | Monomethyl tetrachloroterephthalate, MTP                                                    |            |           |  |  |  |

#### **Table 2. Reference Compounds.**

Reference compounds identified in Figure 1, p. 19, in the study report. IUPAC names from the open literature. -- = Not reported.

**3. Water:Soil:** Water and soil collection and characterization are summarized in **Table 3** and **Tables 4a-4b**, respectively.

| Description           |                        | Details                                                            |  |  |  |
|-----------------------|------------------------|--------------------------------------------------------------------|--|--|--|
| Geographic location   |                        | Painesville, Ohio. Water from the Grand River, soil not specified. |  |  |  |
| Site description      |                        | Not reported                                                       |  |  |  |
| Pesticide use history | at the collection site | Not reported                                                       |  |  |  |
| Collection date       |                        | Not reported                                                       |  |  |  |
| Collection            | Water:                 | Not reported                                                       |  |  |  |
| procedures            | Soil:                  | Not reported                                                       |  |  |  |
| Storage conditions    | Water:                 | Not reported                                                       |  |  |  |
| Storage conditions    | Soil:                  | Not reported                                                       |  |  |  |
| Storage length        |                        | Not reported                                                       |  |  |  |
| Duenenstien           | Water:                 | Not reported                                                       |  |  |  |
| rieparation           | Soil:                  | Ground with a mortar and pestle, then sieved (600 $\mu$ m mesh).   |  |  |  |

### Table 3. Water:Soil Collection and Storage.

Data obtained from pp. 13, 15, in the study report.

#### Table 4. Parameters for Characterization of Water:Soil Samples.

| Parameter                     |                           | Field Sampling/Post | Stage of Test Procedure |        |        |  |  |
|-------------------------------|---------------------------|---------------------|-------------------------|--------|--------|--|--|
| (unit)                        |                           | Handling            | Day 0                   | Day 46 | Day 90 |  |  |
| Water                         |                           |                     |                         |        |        |  |  |
| Temperature (°C)              |                           |                     |                         |        |        |  |  |
| pН                            |                           | 8.6                 |                         |        |        |  |  |
| Hardness (mg/                 | /L as CaCO <sub>3</sub> ) | 204                 |                         |        |        |  |  |
| TOC ( $\mu g/g$ )             |                           |                     |                         |        |        |  |  |
| O <sub>2</sub> Content (%     | saturation)               |                     |                         |        |        |  |  |
| Measured redox potential (mV) |                           |                     |                         |        |        |  |  |
| Soil                          |                           |                     |                         |        |        |  |  |
| Sampling Depth                |                           |                     |                         |        |        |  |  |
| pH 1:2 soil:water             |                           |                     |                         |        |        |  |  |
| Soil Texture (                | USDA)                     | Silty clay loam     |                         |        |        |  |  |
| Particle Size                 | Sand                      |                     |                         |        |        |  |  |
| Distribution                  | Silt                      |                     |                         |        |        |  |  |
| (%)                           | Clay                      |                     |                         |        |        |  |  |
| Organic matte                 | r (%)                     |                     |                         |        |        |  |  |
| Organic carbon (%)            |                           |                     |                         |        |        |  |  |
| CEC (meq/100                  | ) g)                      |                     |                         |        |        |  |  |
| Microbial bio                 | mass (µg C/g soil)        |                     |                         |        |        |  |  |
| Redox potenti                 | al (mV)                   |                     |                         |        |        |  |  |

Data obtained from pp. 13, 43 in the study report.

-- = not reported

#### **B.** Study Design

## **1. Experimental Conditions: Table 5** summarizes the experimental conditions.

#### Table 5. Experimental Design.

| Experimental Design  | Old Basing |
|----------------------|------------|
| Duration of the test | 90 days    |

| Experimental Design                                                               | Old Basing                                                                                                                                                                                                                             |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Water:                                                                            |                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Type and size of filter used                                                      | Not reported                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Amount of soil and water per treatment:                                           |                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Water (mL)                                                                        | 50 mL                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Soil (g dry wt)                                                                   | 25 g                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Water:soil ratio                                                                  | 2:1, w:w                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Application rates:                                                                |                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Nominal                                                                           | Not reported                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Actual                                                                            | 0.425 mg/L                                                                                                                                                                                                                             |  |  |  |  |  |  |
| Number of replicates:                                                             |                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Control, if used                                                                  | Sterile controls were not used.                                                                                                                                                                                                        |  |  |  |  |  |  |
| Treated                                                                           | Duplicate samples (two entire bottles) were collected at each sampling interval.                                                                                                                                                       |  |  |  |  |  |  |
| Test apparatus:                                                                   |                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Type/material/volume                                                              | Amber bottles (4-oz volume) containing treated water and soil were<br>loosely capped and incubated in darkness in an environmental<br>chamber. For at least 1 hour each working day, the caps were removed<br>to encourage aerobicity. |  |  |  |  |  |  |
| Details of traps for CO <sub>2</sub> and organic volatile, if any                 | Volatiles were not trapped.                                                                                                                                                                                                            |  |  |  |  |  |  |
| If no traps were used, is the system closed?                                      | Closed, except for $\geq 1$ hour each working day.                                                                                                                                                                                     |  |  |  |  |  |  |
| Identity and final concentration (based on water volume) of co-solvent            | None                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Test material application method:                                                 |                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Volume of the test solution used/treatment                                        | 50 mL                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Application method ( <i>i.e.</i> , mixed/not mixed)                               | 2 L of water plus 1.18 mg of test substance were mixed with constant<br>stirring for 96 hours. The solution was then filtered, and aliquots (50<br>mL) were added to the bottles containing soil.                                      |  |  |  |  |  |  |
| Any indication of the test material adsorbing to the walls of the test apparatus? | None                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| Microbial biomass (mg C/g)                                                        | Initial Final Initial Final                                                                                                                                                                                                            |  |  |  |  |  |  |
| Water                                                                             | Not reported                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Soil                                                                              | Not reported                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Experimental conditions:                                                          |                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| Temperature                                                                       | $25 \pm 1^{\circ}$ C, range not provided                                                                                                                                                                                               |  |  |  |  |  |  |
| Continuous darkness (yes/no)                                                      | Yes                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| Other details (if any)                                                            | None                                                                                                                                                                                                                                   |  |  |  |  |  |  |

Data obtained from pp. 14-15, of the study report.

## 2. Sampling during Study Period: Table 6 summarizes sampling during the study period.

| Parameter                                                              | Details                                                                          |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Sampling intervals                                                     | 4, 7, 14, 33, 46, 60, and 90 days posttreatment.                                 |
| Sampling method                                                        | Duplicate samples (two entire bottles) were collected at each sampling interval. |
| Method of collection of CO <sub>2</sub> and organic volatile compounds | Volatiles were not addressed.                                                    |
| Sampling Intervals/Times                                               |                                                                                  |
| Redox potential in water layer                                         | Not reported                                                                     |

## Table 6. Sampling during Study Period.

| Parameter                       | Details                                                                             |
|---------------------------------|-------------------------------------------------------------------------------------|
| Dissolved oxygen in water layer |                                                                                     |
| pH in water layer               |                                                                                     |
| Redox potential in soil         |                                                                                     |
| pH in soil                      |                                                                                     |
| Other details, if any           | None. Storage conditions and length of storage prior to analysis were not reported. |

Data obtained from p. 15 of the study report.

#### **3. Analytical Procedures:**

**Separation of the Water and Soil:** The bottle containing the water and soil was agitated, then the mixture was filtered through a fritted glass filter funnel (p. 16). Aliquots of the water were analyzed using LSC.

**Extraction/Clean Up/Concentration Methods:** The water was acidified with concentrated HCl, then partitioned twice against diethyl ether (p. 16). Aliquots of the resulting organosoluble and aqueous fractions were analyzed using LSC.

The soil was extracted twice with acetone:0.3N HCl (80:20, v:v) then washed with acetone by filtering the solvent through the soil while it was still in the funnel (p. 17). Aliquots of the combined extracts were analyzed using LSC. The acetone was removed from the remaining extract under vacuum, and the resulting aqueous phase was partitioned twice against diethyl ether. Aliquots of the resulting organosoluble and aqueous fractions were analyzed using LSC.

The organosoluble fractions from the water and soil were concentrated using a rotovap, then diluted with acetonitrile and analyzed using HPLC.

**Determination of Unextracted Residues:** The extracted soils were dried, ground and analyzed for total radioactivity by LSC following combustion (p. 18).

Determination of Volatile Residues: Volatiles were not addressed.

**Total Radioactivity Measurement:** Total [<sup>14</sup>C] residues were determined by summing the concentrations of residues measured in the water, soil extracts, and extracted soil (Table 1, p. 20).

**Identification and Quantification of Parent and Transformation Compounds:** Aliquots of the water and soil extracts were analyzed by HPLC using a column containing ODS-2 and eluted with a gradient mobile phase of A) acetonitrile and B) water (p. 17). Fractions were collected and analyzed using LSC. HPLC peaks were identified by comparison to reference standards that were cochromatographed with the samples.

**Detection Limits (LOD, LOQ) for the Parent and Transformation Products:** Limits of Detection and Quantification were not reported.

#### **II. Results and Discussion**

A. Data:

Study results, including total mass balances and distribution of radioactivity, are presented in **Table 7**. Redox potentials, oxygen saturation and pH were not reported for the water or the soil. The viability of the test system was not determined.

#### **B. Mass Balance:**

Overall mass balances averaged  $100.8 \pm 4.6\%$  (range 92.1-110.7%) of the applied (Table 1, p. 20). Recoveries were variable but generally within guideline criteria (90% - 110%). No samples were collected at time 0. In the water column, DCPA decreased from a maximum of 32.2% of the applied at 4 days to 1.2% at 90 days posttreatment (Table 2, pp. 21-22). In the soil, DCPA was 72.8% at 4 days, a maximum 77.9% at 14 days, and 27.1% at 90 days.

#### **C. Bound and Extractable Residues:**

In the water, radioactive residues were 39.4% at 4 days posttreatment (first sampling interval) and increased to a maximum 80.4% at 90 days (Table 1, p. 20). In the soil, extractable radioactivity was 77.2% at 4 days, increased to a maximum of 83.8% at 14 days, and was 30.8% at 90 days. Unextracted radioactivity was  $\leq 1.4\%$  in all samples except for one replicate at 7 days (3.4%).

#### **D. Volatilization:**

Volatiles were not measured.

| Sampling Interval<br>(days)    | 4     | 4     | 7    | 7    | 1     | 4    | 3     | 3    | 4     | 6     | 6    | 0    | 9     | 0     |
|--------------------------------|-------|-------|------|------|-------|------|-------|------|-------|-------|------|------|-------|-------|
| Replicate                      | Α     | В     | Α    | В    | Α     | В    | Α     | В    | Α     | В     | А    | В    | Α     | В     |
| DCPA (SDS-893)                 | 94.3  | 94.8  | 90.5 | 92.4 | 89.4  | 89.4 | 79.7  | 80.1 | 50.7  | 40.9  | 37.2 | 41.9 | 28.3  | 15.5  |
| Dacthal diacid<br>(SDS-954)    | 0.3   | 0.4   | 0.4  | 0.5  | 0.6   | 0.9  | 2.4   | 2.0  | 8.1   | 12.9  | 16.4 | 13.3 | 19.5  | 26.2  |
| Dacthal monoacid<br>(SDS-1449) | 1.9   | 1.7   | 3.0  | 3.1  | 5.3   | 6.0  | 14.5  | 14.3 | 38.1  | 43.3  | 43.1 | 41.1 | 46.6  | 54.9  |
| Polar compounds                | 0.3   | 0.3   | 0.1  | 0.1  | 0.1   | 0.1  | 0.3   | 0.3  | 0.2   | 0.2   | 0.2  | 0.2  | 0.2   | 0.2   |
| Water                          | 25.3  | 39.4  | 22.2 | 26.2 | 17.6  | 24.4 | 32.1  | 32.2 | 50.8  | 64.2  | 59.1 | 55.1 | 69.9  | 80.4  |
| Extracted residues             | 77.2  | 70.3  | 72.6 | 71.6 | 83.8  | 67.2 | 68.7  | 66.3 | 50.7  | 40.9  | 37.7 | 38.1 | 30.8  | 19.9  |
| Unextracted residues           | 0.8   | 1.0   | 3.4  | 1.2  | 1.0   | 0.5  | 1.0   | 1.4  | 1.4   | 0.7   | 1.3  | 1.2  | 1.2   | 1.0   |
| CO <sub>2</sub>                | n.a.  | n.a.  | n.a. | n.a. | n.a.  | n.a. | n.a.  | n.a. | n.a.  | n.a.  | n.a. | n.a. | n.a.  | n.a.  |
| Organic Volatiles              | n.a.  | n.a.  | n.a. | n.a. | n.a.  | n.a. | n.a.  | n.a. | n.a.  | n.a.  | n.a. | n.a. | n.a.  | n.a.  |
| Mass balance                   | 103.3 | 110.7 | 98.2 | 99.0 | 102.4 | 92.1 | 101.8 | 99.9 | 102.9 | 105.8 | 98.1 | 94.4 | 101.9 | 101.3 |

Table 7. Aerobic transformation of [<sup>14</sup>C]DCPA, expressed as a percentage of applied radioactivity, in water:silty clay loam sediment.

Data obtained from Tables 1-2, pp. 20-22, of the study report. Unextracted residue values from Table 1. No time 0 samples were collected.

n.a. = not analyzed.

SDS-954 = TPA; Tetrachloroterephthalic acid, DCPA diacid.

SDS-1449 = MTP; Monomethyl tetrachloroterephthalate, DCPA monoacid.

**E. Transformation of Parent Compound:** Transformation kinetics of the parent compound in the total system based on individual sample data is summarized in the following **Figure**, with transformation product information summarized in **Table 8**.

Using a least squares linear regression program (not identified) and averaged data for each interval, the study author determined a total system half-life of 39 days (p. 24; Figure 2, p. 25).



DCPA in aerobic water:silty clay loam sediment

Kinetics models: Single First Order (SFO); Double First Order in Parallel (DFOP), and Indeterminate Order Rate Equation (IORE) in accordance with NAFTA kinetics guidance (USEPA, 2012).

 Table 8. Transformation Products of DCPA in Aerobic Water:soil systems.

|                                            | Transformation<br>Products | Maximum<br>%AR<br>Observed | Associated<br>Interval<br>(days) | Final %AR<br>Observed | Final Interval<br>(days) |
|--------------------------------------------|----------------------------|----------------------------|----------------------------------|-----------------------|--------------------------|
| Ohio, USA<br>Water:silty clay loam soil    | MTP                        | 54.9                       | 90                               | 54.9                  | 90                       |
| (25°C, water pH 8.6, soil pH not reported) | TPA                        | 26.2                       | 90                               | 26.2                  | 90                       |

Data obtained from Table 2, pp. 21-22, in the study report.

MTP = Monomethyl tetrachloroterephthalate, DCPA monoacid, SDS-1449.

TPA = Tetrachloroterephthalic acid, DCPA diacid, SDS-954.

A transformation pathway was not provided by the study author. DCPA degraded to MTP which is turn degrades to TPA. Relatively little is adsorbed to the soil, and based on the material balances little or none appears to be is converted to CO<sub>2</sub> or organic volatile compounds (Table 1, p. 20).

#### **III. Study Deficiencies and Reviewer's Comments**

- 1. No time 0 samples were collected. The study author assumed 100% at time 0 for the half-life calculations (Figure 2, p. 25).
- 2. The soil was described as a silty clay loam from Painesville, Ohio (p. 13). No other information was provided. It was not specified whether the "soil" was a sediment and whether it was co-located with the water. The text refers to the soil properties being presented in Appendix II, but there is no Appendix II (p. 15). Based on the page numbers the document is complete and no pages are missing (i.e., the last page is Page 44 of 44). Soil collection dates and procedures were not reported, and it was not demonstrated that the soil was pesticide-free prior to use.
- 3. The soil was ground and sieved through a 600  $\mu$ m mesh sieve (p. 15). A 2-mm mesh sieve is used in standard practice, since the finer mesh would remove much of the sand fraction of the soil.
- 4. No information was provided on the redox potentials in the water and soil before and during the experiment. The dissolved oxygen concentrations in the water were not reported. The pH of the water was only reported prior to treatment, and the pH of the soil was not reported. It was not known if the test system was oxic or suboxic during the study. The only method used to aerate the system was to open the sample bottles for at least an hour on each working day (p. 15).
- 5. The viability of the test systems was not determined before or at any time during the experiment.
- 6. Storage conditions and length of storage prior to analysis were not reported.
- 7. A single test system was used in the study. Aerobic aquatic metabolism data should be provided for at least two different water:sediment systems.
- 8. Limits of Detection and Quantification were not reported.
- 9. In a supplementary experiment, the dissipation of DCPA in the absence of soil under study conditions was evaluated (p. 15). DCPA was relatively stable in the water, with 92.0% of the applied DCPA undegraded at 91 days posttreatment (Table 4, p. 24). At 91 days, TPA comprised 0.5% of the applied and MTP comprised 4.3%. The study author concluded that the metabolism observed in the definitive experiment was occurring in the soil layer.

#### **IV. References**

- 1. U.S. Environmental Protection Agency. 2008. Fate, Transport and Transformation Test -Guidelines, OPPTS 835.4300, Aerobic Aquatic Metabolism. Office of Prevention, Pesticides and Toxic Substances, Washington, DC. EPA 712-C-08-018.
- 2. U.S. Environmental Protection Agency. 2012. NAFTA Guidance for Evaluating and Calculating Degradation Kinetics in Environmental Media.

| Code Name/<br>Synonym                                  | Chemical Name                                                                                                                                                                                                                        | Chemical Structure                        | Study<br>Type                                | MRID     | Maximum %AR (day)                 |                     | Final %AR<br>(study length) |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|----------|-----------------------------------|---------------------|-----------------------------|--|--|--|--|--|
| PARENT                                                 |                                                                                                                                                                                                                                      |                                           |                                              |          |                                   |                     |                             |  |  |  |  |  |
| DCPA (Dacthal,<br>Chlorthal-<br>dimethyl; SDS-<br>893) | IUPAC: Dimethyl 2,3,5,6-         tetrachlorobenzene-1,4-         dicarboxylate         CAS #: 1861-32-1         Formula: C10H6Cl4O4         MW: 331.9 g/mol         SMILES:         COC(=0)c1c(c(c(c(c1Cl)Cl)C(=         0)OC)Cl)Cl  | a $b$ | 835.4300<br>Aerobic<br>aquatic<br>metabolism | 49307515 | PRT                               |                     | PRT                         |  |  |  |  |  |
|                                                        |                                                                                                                                                                                                                                      | MAJOR (>10%) TRANSFORMATION P             | RODUCTS                                      |          |                                   |                     |                             |  |  |  |  |  |
| MTP (Dacthal<br>monoacid, SDS-<br>1449)                | IUPAC: 2,3,5,6-Tetrachloro-4-<br>methoxycarbonyl-benzoic acid<br>CAS #: 887-54-7<br>Formula: C <sub>9</sub> H <sub>4</sub> Cl <sub>4</sub> O <sub>4</sub><br>MW: 317.9 g/mol<br>SMILES:<br>COC(=O)c1c(c(c(c(c1Cl)Cl)C(=<br>O)O)Cl)Cl |                                           | 835.4300<br>Aerobic<br>aquatic<br>metabolism | 49307515 | River<br>water:silty<br>clay loam | <b>54.9%</b> (90 d) | <b>54.9%</b> (90 d)         |  |  |  |  |  |
| TPA (Dacthal<br>diacid, SDS-954)                       | IUPAC: 2,3,5,6-<br>Tetrachloroterephthalic acid<br>CAS #: 2136-79-0<br>Formula: C <sub>8</sub> H <sub>2</sub> Cl <sub>4</sub> O <sub>4</sub><br>MW: 303.9 g/mol<br>SMILES:<br>c1(c(c(c(c(c1C1)C1)C(=O)O)C1)C<br>1)C(=O)O             |                                           | 835.4300<br>Aerobic<br>aquatic<br>metabolism | 49307515 | River<br>water:silty<br>clay loam | <b>26.2%</b> (90 d) | <b>26.2%</b> (90 d)         |  |  |  |  |  |

#### DER ATTACHMENT 1. DCPA and Its Environmental Transformation Products. A

| Code Name/<br>Synonym                                      | Chemical Name | Chemical Structure | Study<br>Type | MRID | Maximum %AR (day) | Final %AR<br>(study length) |  |  |  |
|------------------------------------------------------------|---------------|--------------------|---------------|------|-------------------|-----------------------------|--|--|--|
| MINOR (<10%) TRANSFORMATION PRODUCTS                       |               |                    |               |      |                   |                             |  |  |  |
| No minor transformation products were identified.          |               |                    |               |      |                   |                             |  |  |  |
| REFERENCE COMPOUNDS NOT IDENTIFIED                         |               |                    |               |      |                   |                             |  |  |  |
| All compounds used as reference compounds were identified. |               |                    |               |      |                   |                             |  |  |  |

<sup>A</sup> AR means "applied radioactivity". MW means "molecular weight". PRT means "parent".

## Attachment 2: Statistics Spreadsheets and Graphs

#### **Attachment 3: Calculations**

Calculations were performed by the reviewer using PestDF, and the following equations.

#### Single First-Order (SFO) Model

$$\boldsymbol{C_t} = \boldsymbol{C_0} \mathbf{e}^{-\mathbf{kt}} \tag{eq. 1}$$

where,

$$\begin{split} C_t &= \text{concentration at time t (\%)} \\ C_0 &= \text{initial concentration (\%)} \\ e &= \text{Euler's number (-)} \\ k &= \text{SFO rate constant of decline (d^{-1})} \\ t &= \text{time (d)} \end{split}$$

The SFO equation is solved with R kinetics software by adjusting  $C_0$  and k to minimize the objective function (S<sub>SFO</sub>) shown in equation 9.

$$DT_{50} = natural \log (2)/k$$
 (eq. 2)

$$DT_{90} = \ln (10)/k$$
 (eq. 3)

#### Indeterminate Order Rate Equation (IORE) Model

$$C_{t} = \left[C_{0}^{(1-N)} - (1-N)k_{IORE}t\right]^{\left(\frac{1}{1-N}\right)}$$
(eq. 4)

where,

N = order of decline rate (-)  $k_{IORE} = IORE$  rate constant of decline (d<sup>-1</sup>)

This equation is solved with R kinetics software by adjusting C0, kIORE, and N to minimize the objective function for IORE (SIORE) (See equation 9). Half-lives for the IORE model are calculated using equation 5, which represents a first-order half-life that passes through the  $DT_{90}$  of the IORE model. (Traditional  $DT_{50}$  and  $DT_{90}$  values for the IORE model can be calculated using equations 6 and 7.)

$$t_{\text{IORE}} = \frac{\log(2)}{\log(10)} \frac{C_0^{1-N} (1-0.1^{(1-N)})}{(1-N)k_{IORE}}$$
(eq. 5)

$$DT_{50} = \frac{(C_0/2)^{(1-N)} - C_0^{(1-N)}}{k(N-1)}$$
(eq. 6)

(eq. 7)

(eq. 8)

$$DT_{90} = \frac{(C_0/10)^{(1-N)} - C_0^{(1-N)}}{k(N-1)}$$

**Double First-Order in Parallel (DFOP) Model** 

$$C_t = C_0 g^{-k_1 t} + C_0 (1-g)^{-k_2 t}$$

where,

g = the fraction of  $C_0$  applied to compartment 1 (-)

 $k_1$  = rate constant for compartment 1 (d<sup>-1</sup>)

 $k_2$  = rate constant for compartment 2 (d<sup>-1</sup>)

If  $C_0 x g$  is set equal to *a* and  $C_0(1-g)$  is set equal to *c*, then the equation can be solved with R kinetics software for *a*, *c*,  $k_1$ , and  $k_2$  by minimizing the objective function (S<sub>DFOP</sub>) as described in equation 9.

 $DT_{50}$  and  $DT_{90}$  values can be calculated using equations 2 and 3, with  $k_1$  or  $k_2$  in place of k.

Objective Function: SFO, IORE, and DFOP are solved by minimizing the objective function ( $S_{SFO}$ ,  $S_{IORE}$ , or  $S_{DFOP}$ ).

$$\mathbf{S}_{\text{SFO}}, \mathbf{S}_{\text{IORE}}, \text{ or } \mathbf{S}_{\text{DFOP}} = \sum (\mathbf{C}_{model}, \mathbf{t} - \mathbf{C}_{d,t})^2$$
(eq. 9)

where,

 $\begin{array}{l} S_{SFO} \text{, } S_{IORE} \text{, } \text{or } S_{DFOP} = \text{objective function of kinetics model fit (\%^2)} \\ n = number \text{ of data points (-)} \\ C_{model,t} = \text{modeled value at time corresponding to } C_{d,t} \ (\%) \\ C_{d,t} = \text{experimental concentration at time t (\%)} \end{array}$ 

#### Critical Value to Determine Whether SFO is an Adequate Kinetics Model

If  $S_{SFO}$  is less than  $S_C$ , the SFO model is adequate to describe kinetics. If not, the faster of  $t_{IORE}$  or the DFOP DT<sub>50</sub> for compartment 2 should be used.

$$S_{c} = S_{IORE} \left( 1 + \frac{p}{n-p} F(\alpha, p, n-p) \right)$$
(eq. 10)

where,

 $S_c$  = the critical value that defines the confidence contours (%<sup>2</sup>)

p = number of parameters (3 in this case)

 $\alpha$  = the confidence level (0.50 in this case)

 $F(\alpha, p, n-p) = F$  distribution with  $\alpha$  level of confidence and degrees of freedom p and n-p